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1 Introduction

Accurate 3D lung segmentation from CT images is critical for the diagnosis and treatment of
pulmonary diseases. This project builds upon a 3D U-Net to tackle the AAPM Thoracic Auto-
segmentation Challenge dataset. The primary objective is to reduce overfitting and enhance
generalization through:

e A 5-level U-Net architecture (deeper than the baseline).
e Strong data augmentations (flips, rotations, elastic transforms).
e Dropout, L2 weight decay, and learning rate schedules.

Various learning rates, dropout rates, and weight decays were tested; early stopping was also
employed. The final Jupyter Notebook that implements these improvements has been uploaded
along with the trained weights for inference.

2 Methods

2.1 Model Architecture

The network is a 5-level 3D U-Net that processes volumes of size 64 x 64 x 64. Each encoder
level consists of:

e Two 3D convolutions (kernel size = 3 x 3 x 3), each followed by Batch Normalization and
ReLU.

e Dropout (0.5) and L2 weight decay (10~°) to reduce overfitting.
e A MaxPooling3D step to halve spatial dimensions.

The decoder mirrors this structure using Conv3DTranspose for upsampling, concatenating skip
connections from the corresponding encoder level.

2.2 Data Preprocessing & Augmentation
e HU Windowing: [—1000, 300] clipped, then normalized to [0, 1].

e Lung Binarization: Masks thresholded to 0 or 1.
e Augmentation:

— Random axis flips.
— Random 3D rotations up to £10°.

— Elastic deformations with B-Spline transforms.

This combination was iteratively tuned to increase variance in training data and reduce over-
fitting.
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Figure 1: Demonstration of augmentations on a single CT slice. Elastic warping is particularly
visible around the lung boundaries.

2.3 Training Setup

e Loss Function: A blend of binary cross-entropy and Dice loss.

e Optimizer: Adam, with initial learning rates {1 x 1074 5 x 1074, 1 x 1073}. The best
results came from 5 x 10~* with a ReduceLROnPlateau schedule (patience = 6).



e EarlyStopping: Monitored validation Dice, patience = 15.
e Batch Size: 1 volume.

e Train/Val/Test Split: ~80% train, 10% validation (6 patients), 10% test (6 patients).

3 Results

3.1 Training Curves
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Figure 2: Training metrics: (a) Loss over epochs, (b) Dice over epochs, (c¢) IoU over epochs.
Initial Dice values were low (0.3) but gradually improved to ~ 0.85-0.90. Spikes in validation
metrics arise due to the small validation set.



3.2 Visual Evaluation on Validation Data
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Figure 3: Validation predictions at different epochs. KEarly epochs show fragmented masks,
while later epochs approach near-complete lung coverage.



3.3 Test Results
Final Test Metrics:

e Test Loss = 0.1586
e Test Dice = 0.8864
o Test IoU = 0.7962

These scores confirm robust lung segmentation with minimal overfitting.
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Figure 4: Predicted masks align well with ground truth lung structures across diverse patient
anatomies.



4 Discussion and Conclusions

Overfitting was effectively reduced by:
e High dropout (0.5) in the U-Net convolution blocks.
e Weight decay (107°).
e Extensive augmentations (random flips, rotations, elastic).
e Adaptive learning rate via ReduceLROnPlateau and EarlyStopping.

Despite minor oscillations of the validation metric due to the limited validation set (6 patients),
the final test Dice of ~ 0.886 demonstrates strong lung coverage.
Future enhancements might include:

e Attention-based 3D U-Nets or residual blocks for more nuanced features.

e Larger input resolutions (128 x 128 x 128) if memory allows, capturing finer lung bound-
aries.

e Cross-validation or a bigger validation split for more stable metric tracking.

Overall, the 5-level 3D U-Net with strategic regularization and augmentation achieved reliable
segmentation while mitigating overfitting. The final Jupyter Notebook and weights have been
uploaded, enabling reproducible inference and further experimentation.

References

1. AAPM Thoracic Auto-segmentation Challenge, 2017.

2. Original data on The Cancer Imaging Archive (TCIA): “LCTSC” dataset.



