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Abstract—Class-Incremental Learning (Class-IL) is a
branch of continual learning focused on sequentially
adding new classes (tasks) into a single classification
model. The critical challenge in Class-IL is catastrophic
forgetting—the model often loses performance on pre-
viously learned classes when trained on new ones. This
dilemma between retaining old knowledge (stability)
and acquiring new knowledge (plasticity) is referred to
as the stability–plasticity dilemma.

This report presents an extensive empirical study
using five approaches on an Indian fruits dataset called
FruitNet:

• Fine-Tuning – a naïve incremental approach (train
only on new data each step),

• Joint – re-trains on all data at each task for an
upper bound measure,

• iCaRL – incremental classifier and replay (stores
exemplars),

• EWC – regularization-based (elastic weight consol-
idation),

• LwF – knowledge distillation (learning without
forgetting).

The experiments gauge:
• How effectively each method preserves old classes’

performance,
• How well each learns the new classes,
• The computational (time) and memory (model

size) overhead.
Index Terms—class-incremental learning, continual

learning, catastrophic forgetting, FruitNet, iCaRL,
EWC, LwF.

I. Introduction
Class-Incremental Learning (Class-IL) is a subfield of

continual learning that requires a model to learn new
classes (tasks) sequentially while retaining performance on
previously learned classes [1], [5], [7]. The main difficulty is
catastrophic forgetting, where adapting to new data causes
performance degradation on old tasks. This scenario poses
the stability–plasticity dilemma: balancing the retention of
past knowledge (stability) vs. effective integration of new
information (plasticity).

Experiments were run on the FruitNet dataset [6] to
compare the following:

• Fine-Tuning: trains only on data for the current
task,

• iCaRL: a replay-based approach using exemplars [7],
• EWC: Fisher-based regularization [3],
• LwF: knowledge distillation from the old model [5].

A non-continual reference model, denoted Joint, is also
included as an upper bound baseline.

II. Dataset: FruitNet
FruitNet [6] includes images of Indian fruits in categories

good, bad, and mixed. Only the good and bad subsets are
used for five fruit types (Apple, Banana, Guava, Lime,
Orange). Each fruit has two classes (e.g., “Apple_Good”
and “Apple_Bad”).

All images are rescaled to 192×192 pixels and nor-
malized. A single-head classification approach is applied,
expanding the final layer by two outputs whenever a new
fruit is introduced. Five tasks are defined, each adding
two new classes (Apple, Banana, Guava, Lime, Orange).
An 80%/20% train–test split is used.

The number of images for each label is nearly identical,
so no additional balancing was performed. The approxi-
mate counts per label are:

• Apple_Bad: 1141
• Apple_Good: 1149
• Banana_Bad: 1087
• Banana_Good: 1113
• Guava_Bad: 1129
• Guava_Good: 1152
• Lime_Bad: 1085
• Lime_Good: 1094
• Orange_Bad: 1159
• Orange_Good: 1216
Each task introduces two classes (Bad/Good for each

fruit), with the following total training and test samples:
• Task 0: 1831 training, 459 test
• Task 1: 1759 training, 441 test
• Task 2: 1824 training, 457 test
• Task 3: 1743 training, 436 test
• Task 4: 1899 training, 476 test
Label distributions per task are:
• Task 0 train: {0: 919, 1: 912}, test: {0: 230, 1: 229}
• Task 1 train: {2: 890, 3: 869}, test: {2: 223, 3: 218}
• Task 2 train: {4: 921, 5: 903}, test: {4: 231, 5: 226}
• Task 3 train: {6: 875, 7: 868}, test: {6: 219, 7: 217}
• Task 4 train: {8: 972, 9: 927}, test: {8: 244, 9: 232}

III. Methodology
A. Model and Training Setup

• Network: ResNet-18, pretrained on ImageNet.



Fig. 1: Sample images from the dataset classes.

• Optimizer: SGD with learning rate 10−4, momen-
tum 0.9, weight decay 10−4.

• Epochs per Task: 5.
• Batch Size: 128.

B. Approaches and Baseline

Fine-Tuning: Trains only on the current task’s data,
making it prone to catastrophic forgetting.

iCaRL [7]: Maintains a replay buffer of exemplars from
previous tasks.

Fig. 2: ResNet-18 architecture.

EWC [3]: Uses a Fisher-based penalty to keep impor-
tant weights close to their previous values.

LwF [5]: Uses knowledge distillation from previous
models to mitigate forgetting.

Joint: Retrains on all accumulated data at each task
step, serving as an upper bound reference rather than a
continual method.

C. Performance Metrics
A 5×5 matrix R is tracked, where R[t, k] is the accuracy

on Task k after training on Task t. Key quantities include:
• Current-Task Accuracy: R[t, t].
• Past-Task Accuracy: average of R[t, 0..t − 1].
• Forgetting: R[j, j] − R[4, j] for j = 0, . . . , 3.
• Plasticity: average diagonal 1

5
∑4

t=0 R[t, t].
• Stability: negative sum of all forgetting for tasks 0

to 3.

IV. Experimental Results

A. Results Matrices (R)
Accuracy matrices R for each method are shown below.
Fine-Tuning

TABLE I: Fine-Tuning: R (5×5)

Train Step Task0 Task1 Task2 Task3 Task4
0 0.95 0.04 0.17 0.05 0.25
1 0.23 0.91 0.03 0.03 0.36
2 0.10 0.49 0.97 0.11 0.00
3 0.04 0.36 0.48 0.94 0.03
4 0.02 0.20 0.41 0.43 0.89

Joint

TABLE II: Joint: R (5×5), Non-Continual Reference

Train Step Task0 Task1 Task2 Task3 Task4
0 0.96 0.26 0.00 0.06 0.06
1 0.98 0.98 0.04 0.01 0.22
2 0.98 1.00 0.95 0.00 0.03
3 0.98 1.00 0.96 0.97 0.00
4 0.97 1.00 0.96 0.98 0.88

iCaRL
EWC
LwF



TABLE III: iCaRL: R (5×5)

Train Step Task0 Task1 Task2 Task3 Task4

0 0.92 0.17 0.06 0.09 0.04
1 0.52 0.97 0.06 0.08 0.08
2 0.43 0.73 0.93 0.31 0.08
3 0.34 0.73 0.48 0.93 0.02
4 0.37 0.76 0.54 0.45 0.89

TABLE IV: EWC: R (5×5)

Train Step Task0 Task1 Task2 Task3 Task4
0 0.94 0.47 0.09 0.02 0.03
1 0.48 0.91 0.10 0.00 0.27
2 0.44 0.78 0.89 0.15 0.40
3 0.24 0.27 0.20 0.98 0.11
4 0.19 0.44 0.34 0.73 0.62

TABLE V: LwF: R (5×5)

Train Step Task0 Task1 Task2 Task3 Task4
0 0.78 0.05 0.01 0.14 0.00
1 0.32 0.56 0.15 0.12 0.14
2 0.14 0.10 0.80 0.24 0.07
3 0.01 0.04 0.07 0.92 0.25
4 0.00 0.02 0.02 0.20 0.80

Fig. 3: Performance on current experience (R[t, t]).

B. Comparison Plots and Interpretations
Fine-Tuning, iCaRL, and EWC typically maintain high
accuracy on the current task. LwF lags behind in some
tasks. The Joint line is shown only for reference.

Fig. 4: Performance on past experiences (avg R[t, < t]).

iCaRL exhibits a moderate level of retention for previ-
ous tasks. EWC and Fine-Tuning degrade more as tasks
progress, and LwF shows relatively weaker retention. The
Joint curve remains near-perfect but is not a continual
method.

Fig. 5: Execution time per task.

Retraining on all data each step (Joint) increases time
notably. Fine-Tuning, iCaRL, EWC, and LwF operate in
a lower time range.
iCaRL finds a favorable balance between plasticity and
stability. EWC is moderately effective, while Fine-Tuning



Fig. 6: Plasticity vs. stability (top-right is best).

has good plasticity but poor stability. LwF appears weaker
in this setup. Joint is included as a reference.

Fig. 7: Final Average Accuracy (Row=4 across tasks).

Figure 7 shows the final average accuracy (Row=4) for
each method. Fine-Tuning obtains 0.39, Joint 0.96, iCaRL
0.60, EWC 0.46, and LwF 0.21. The Joint model benefits
from retraining on all data, while iCaRL emerges as the
top performer among the purely continual methods.

C. Total Training Time
Table VI compares total seconds from Task 0 to Task

4. Joint is strictly for reference.

V. Hyperparameter Search
A. iCaRL
Hyperparameter Selection for iCaRL: Although us-
ing 50 exemplars per class yields the highest final average
accuracy and the lowest sum of forgetting, the perfor-
mance gain over using 25 exemplars is marginal. Since
doubling the memory requirement from 25 to 50 exemplars

TABLE VI: Total training time (all tasks)

Method Total Time (s)
Fine-Tuning 138.9
Joint 409.3
iCaRL 145.7
EWC 170.9
LwF 148.2

TABLE VII: iCaRL hyperparameters

memory_per_class Final Avg Acc Sum of Forgetting
10 0.3969 2.35

25 (chosen) 0.5596 1.27
50 0.6672 0.92

significantly increases memory usage without a significant
improvement, selected 25 exemplars per class as a more
practical trade-off.

B. EWC

TABLE VIII: EWC hyperparameters

ewc_lambda Final Avg Acc Sum of Forgetting
1 0.4367 1.72
10 0.3338 2.20

100 (chosen) 0.5122 1.46
1000 0.1002 1.31
10000 0.1002 0.30

Hyperparameter Selection for EWC: Observed that
increasing the ewc_lambda parameter beyond 100 results
in a dramatic reduction in the final average accuracy,
with only a minimal decrease in the sum of forgetting.
Therefore, a value of 100 for ewc_lambda was chosen
as it provides the best balance between performance and
forgetting mitigation.

C. LwF
Hyperparameter Selection for LwF: Although various
combinations of distill_lambda and distill_temp were
tested, the overall performance of LwF was insufficient
compared to other methods. Among the tested combina-
tions, the one with distill_lambda = 1.0 and distill_temp
= 10 achieved the highest final average accuracy and was
thus selected, despite its overall weaker performance.

VI. Discussion and Conclusions
Key Observations (Continual Methods):

• iCaRL successfully preserves old knowledge while
maintaining strong results on new tasks.

• EWC helps mitigate forgetting but is less effective
than iCaRL under these settings.

• LwF is weaker across both plasticity and stability
measures in these experiments.



TABLE IX: LwF hyperparameters

distill_lambda distill_temp Final Avg Acc Sum of Forgetting
0.1 1 0.2305 3.71
0.1 2 0.2102 3.79
0.1 5 0.1949 3.88
0.1 10 0.2070 3.79
1.0 1 0.2143 2.72
1.0 2 0.2256 2.56
1.0 5 0.2266 2.82

1.0 (chosen) 10 (chosen) 0.2350 2.51
2.0 1 0.2186 1.74
2.0 2 0.1802 1.75
2.0 5 0.1986 2.16
2.0 10 0.2016 1.83
5.0 1 0.0920 0.74
5.0 2 0.1051 0.80
5.0 5 0.1201 0.85
5.0 10 0.1896 0.57
10.0 1 0.0903 0.90
10.0 2 0.1048 1.15
10.0 5 0.1388 0.27
10.0 10 0.1808 0.79

• Fine-Tuning is the simplest but forgets heavily once
new tasks arrive.

Joint is not a continual learning approach but provides
a reference upper bound when retraining on all data.
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