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Abstract—This project aims to develop and evaluate two
approaches for food recognition: a Convolutional Neural Network
(CNN) and a traditional machine learning approach using Scale-
Invariant Feature Transform (SIFT) and Bag of Words (BoW)
representation with Support Vector Machines (SVM). The dataset
comprises 251 food classes with varying numbers of images
per class. Data preprocessing, feature extraction, model train-
ing, hyperparameter tuning, and performance evaluation were
performed. The results highlight the challenges and limitations
faced due to computational constraints and the large dataset size.

Index Terms—Food recognition, Convolutional Neural Net-
work, SIFT, Bag of Words, Support Vector Machine

I. INTRODUCTION

The objective of this project is to develop and evaluate
two different approaches for food recognition: a Convolutional
Neural Network (CNN) and a traditional machine learning
approach using Scale-Invariant Feature Transform (SIFT) and
Bag of Words (BoW) representation with Support Vector
Machines (SVM). The dataset comprises 251 food classes with
a varying number of images per class, ranging from 100 to 600
images.

II. DATA PREPROCESSING

A. Data Distribution

The dataset used in this project is the iFood-2019-FGVC6
dataset, which was originally split into training and validation
sets. We used the training set for both training and validation,
and the original validation set from the dataset as the test set.
The number of images in each dataset is as follows:

• Number of train images: 100,703
• Number of validation images: 17,772
• Number of test images: 11,994

B. Distribution of Training Images per Class

C. Distribution of Validation Images per Class

D. Distribution of Test Images per Class

E. Data Preprocessing Steps

Data preprocessing is a critical step in the pipeline to ensure
that the images are in a suitable format for the models. The
following steps were applied:

1) Unzipping the Dataset: The training and validation sets
were unzipped from their respective compressed files.

Fig. 1. Distribution of Training Images per Class

Fig. 2. Distribution of Validation Images per Class

The contents were extracted and verified to ensure that
all files were correctly placed in their directories.

2) Reading and Splitting the Data: The training labels
were read from a CSV file, and the file paths were
generated for each image. The dataset was then split
into training and validation sets with a 15% split for
validation.

3) Image Augmentation: For the CNN, image augmenta-
tion was performed to enhance the dataset’s diversity.
This included rescaling, shearing, zooming, and hori-
zontal flipping. Image augmentation helps in improving
the generalization capability of the model by providing
varied versions of the same image.



Fig. 3. Distribution of Test Images per Class

4) Image Preprocessing: Images were resized to a com-
mon size of 224x224 pixels and normalized by rescaling
the pixel values. This step ensured that all images fed
into the model had consistent dimensions and pixel value
ranges.

5) Data Generators: ImageDataGenerators were used to
load images in batches during model training, validation,
and testing. This approach helps in efficient memory
management and speeds up the training process.

F. Handling Large Dataset Size

Due to the large size of the dataset, repeatedly evaluating
and training the models became computationally intensive.
Additionally, some images in the dataset were improper or did
not represent any food class accurately, which could adversely
affect the model’s performance. These factors necessitated
efficient data handling and preprocessing techniques to manage
the computational load.

G. Constraints on CNN Model

The CNN model was constrained to have a maximum of
1 million parameters to ensure computational efficiency and
avoid overfitting. This constraint was adhered to by using
separable convolutions and a minimalistic architecture.

H. Example of Original and Preprocessed Image

Fig. 4. Original and Preprocessed Image

III. MODEL ARCHITECTURE

A. CNN Model

A custom CNN model was designed with the total number
of parameters kept below 1 million to ensure computational
efficiency. The model architecture included separable convo-
lutions, max-pooling layers, dropout layers, and dense layers,
optimizing for a balance between model complexity and
performance.

The final architecture of the CNN model is detailed below:

TABLE I
CNN MODEL ARCHITECTURE

Layer (type) Output Shape Param #
SeparableConv2D (None, 224, 224, 16) 91
ReLU (None, 224, 224, 16) 0
MaxPooling2D (None, 112, 112, 16) 0
SeparableConv2D (None, 112, 112, 32) 688
ReLU (None, 112, 112, 32) 0
MaxPooling2D (None, 56, 56, 32) 0
SeparableConv2D (None, 28, 28, 53) 2,261
ReLU (None, 28, 28, 53) 0
MaxPooling2D (None, 14, 14, 53) 0
SeparableConv2D (None, 14, 14, 73) 4,790
ReLU (None, 14, 14, 73) 0
MaxPooling2D (None, 7, 7, 73) 0
Flatten (None, 3577) 0
Dropout (None, 3577) 0
Dense (None, 256) 915,968
Dropout (None, 256) 0
Dense (None, 251) 64,507

Total parameters: 988,305 (3.77 MB)

B. Training Challenges

Training the CNN model posed significant challenges due to
the computational constraints and the large size of the dataset.
Despite attempts to optimize the model and training process,
the training duration was extensive, and the computational
resources were insufficient to achieve higher performance.
The training process frequently crashed on Kaggle due to
the high computational demand, and the epoch durations were
extremely long, often exceeding 1100 seconds per epoch. The
training and validation accuracy remained very low throughout
the training process.

IV. FEATURE EXTRACTION AND BOW

A. SIFT Keypoints

SIFT keypoints were visualized on a few sample images to
illustrate the feature extraction process. This visualization pro-
vided insight into how the algorithm identifies and represents
distinct features within the images.

B. BoW Histograms for Training Set

C. BoW Histograms for Validation Set

V. MODEL EVALUATION

A. SVM with Linear Kernel

The SVM model with a linear kernel was evaluated on the
validation set. The metrics for the linear kernel model are as
follows:



Fig. 5. BoW Histograms for Training Set

• Validation Accuracy: 0.0050
• Validation Precision: 0.0059
• Validation Recall: 0.0050
• Validation F1 Score: 0.0003

The performance of the SVM with a linear kernel was
significantly lower compared to the RBF kernel. This is likely
due to the linear kernel’s inability to capture the complex
relationships in the high-dimensional feature space of the food
images.

B. SVM with RBF Kernel

The SVM model with an RBF kernel was evaluated on the
validation and test sets. The metrics for the best performing
model are as follows:

• Validation Accuracy: 0.0697
• Validation Precision: 0.0666
• Validation Recall: 0.0697
• Validation F1 Score: 0.0574
• Test Accuracy: 0.0787
• Test Precision: 0.0791
• Test Recall: 0.0787
• Test F1 Score: 0.0668

Fig. 6. BoW Histograms for Validation Set

The SVM with RBF kernel showed better performance
across all metrics compared to the linear kernel. However, the
overall accuracy and other metrics were still relatively low.

C. Test Set Evaluation

1) Test Accuracy: A bar plot for test accuracy illustrated
the model’s performance on unseen data, indicating the gen-
eralizability of the model. The RBF kernel outperformed the
linear kernel.

2) Test Precision: The test precision was visualized to
understand the model’s precision on the test set, highlighting
its effectiveness in correctly identifying positive instances.

3) Test Recall: A bar plot for test recall provided insights
into the model’s ability to detect all relevant samples in the
test set.

4) Test F1 Score: The F1 score for the test set was plotted
to evaluate the balance between precision and recall, offering
a comprehensive view of the model’s performance.

VI. CONCLUSION

The project successfully implemented and evaluated two
distinct approaches for food recognition. The CNN model
and the SIFT/BoW with SVM classifier were both trained
and tested on a diverse dataset of 251 food classes. Despite



the challenges posed by class imbalance and computational
constraints, the models demonstrated their capability to learn
and generalize from the data.

A. Key Findings

• The CNN model showed a promising learning trajectory
with potential for further improvements through hyperpa-
rameter tuning and architectural adjustments.

• The SVM with RBF kernel performed significantly better
than the linear kernel, indicating its superior capability in
capturing complex patterns in the data.

• The detailed analysis of precision, recall, and F1 scores
highlighted areas for potential enhancements, particularly
in improving the recall and overall balance between
precision and recall.

B. Limitations

• Limited Model Parameters: The constraint of having
less than 1 million parameters for the CNN model re-
stricted its ability to learn complex patterns effectively,
leading to relatively lower performance metrics.

• Data Quality: Some images in the dataset were not
representative of any food class or were of poor quality,
impacting the model’s learning and performance.

• Computational Constraints: The large size of the
dataset made it challenging to repeatedly evaluate and
train the models efficiently. Frequent crashes on Kaggle
due to insufficient computational resources further limited
the ability to refine and improve the models.

C. Future Work

Future work will focus on:
• Enhancing the CNN architecture to further improve per-

formance while adhering to computational constraints.
• Exploring advanced feature extraction techniques to aug-

ment the traditional machine learning approach.
• Implementing more sophisticated data augmentation and

preprocessing methods to handle class imbalance and
improve data quality.

This project serves as a foundational step towards develop-
ing robust food recognition systems, contributing to advance-
ments in computer vision and pattern recognition within the
domain of food classification.
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